Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington KY 40536, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA

Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.047$
$w R$ factor $=0.134$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Methyl (E)-2-cyano-3-(1H-indol-3-yl)acrylate

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, the indole ring system is planar and the acrylate double bond adopts the E stereochemistry. The molecules are linked by intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The Knovenagal condensation is an important carbon-carbon-bond-forming reaction in organic synthesis. Utilizing this reaction, we attempted to prepare ethyl (E)-2-cyano-3(1 H -indol-3-yl)acrylate, (I), by reacting indole-3-carbaldehyde with ethyl cyanoacetate in methanol, using a catalytic amount of piperidine under reflux. However, the resultant product was not the expected compound (I), but the trans-esterified product, viz. methyl (E)-2-cyano-3-(1H-indol-3-yl)acrylate, (II), which was obtained as a single geometrical isomer. In order to confirm the double-bond geometry of this compound, its X-ray crystal structure determination has been carried out.

(II)

The molecular structure and atom-numbering scheme of (II) are shown in Fig. 1. Selected geometric parameters are presented in Table 1. The $\mathrm{C} 9=\mathrm{C} 10$ double bond is coplanar with the plane of the indole ring system, evident from the $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10$ torsion angle $\left[3.1(3)^{\circ}\right]$, facilitating extended conjugation between the π-electrons of the indole ring system and the acrylate group.

The packing of compound (II), viewed down the a axis, is illustrated in Fig. 2. The molecules are linked by an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, details of which are given in Table 2.

Experimental

Indole-3-carbaldehyde ($0.725 \mathrm{~g}, 5 \mathrm{mmol}$) and ethyl cyanoacetate ($0.566 \mathrm{~g}, 5 \mathrm{mmol}$) were mixed in 10 ml methanol. To the mixture 3-4 drops of piperidine were added and the mixture refluxed for 2 h . Crystals separated out after cooling and were collected by filtration and washed with methanol. Recrystallization from methanol afforded bright-yellow crystals of (II), which were suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 3.81(s, 3 \mathrm{H}), 7.20-7.29(m, 2 \mathrm{H}), 7.55(d, 1 \mathrm{H}), 7.94$ $(d, 1 \mathrm{H}), 8.54(t, 2 \mathrm{H}), 12.58(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO): $\delta 52.6,91.9$,

Figure 1
A view of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
$109.8,112.8,117.9,118.4,122.0,123.5,126.7,132.6,136.1,146.5$, 163.5.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=226.23$
Monoclinic, $P 2_{1} / c$
$a=11.3655(5) \AA$
$b=6.2177(3) \AA$
$c=15.9239(8) \AA$
$\beta=94.552(2)^{\circ}$
$V=1121.75(9) \AA^{3}$
$Z=4$

$$
D_{x}=1.340 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2793 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=90.0$ (2) K
Cut needle, yellow
$0.32 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
ω scans ω scans
Absorption correction: none 4603 measured reflections
2573 independent reflections
1703 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& R_{\text {int }}=0.039 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-7 \rightarrow 8 \\
& l=-20 \rightarrow 20
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.134$
$S=1.03$
2573 reflections
155 parameters

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0778 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$			
$\mathrm{~N} 2-\mathrm{C} 12$	$1.342(2)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.3376(18)$
$\mathrm{O} 1-\mathrm{C} 11$	$1.1522(18)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.393(2)$
	$1.2165(16)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.355(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$			
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 2$	$129.94(15)$	$\mathrm{O} 1-\mathrm{C} 11-\mathrm{O} 2$	$123.76(13)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 12$	$131.12(14)$	$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 10$	$123.85(14)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$122.12(14)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 10$	$112.39(12)$
	$119.11(13)$		
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 1$			

Figure 2
Packing diagram of the title compound, viewed down the a axis. H atoms have been omitted for clarity.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.01	$2.8214(16)$	153
Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.				

All H atoms were placed in calculated positions and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.88 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl C atom.

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 and local procedures.

This investigation was supported by the National Institute of Alcohol Abuse and Alcoholism Grant AA12600.

References

Nonius (1999). COLLECT. Nonius, BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick (1995). XP in SHELXTL/PC. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

